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Abstract. Ubiquitous computing has fundamentally redefined many ex-
isting business models. The collected sensor data has great potential,
which is being recognized by more and more industries, including car in-
surance companies with Usage-Based Insurance (UBI). However, most of
these business models are very privacy-invasive and must be constructed
with care. For a data processor, the integrity of the data is particularly
important. With kUBI , we present a framework that takes into account
the interests of the providers as well as the privacy of the users, using
the example of Android. It is fully integrated into the Android system
architecture. It uses hybrid data processing in both stakeholder domains.
Protected enclaves, whose function can be transparently traced by a user
at any time, protect company secrets in the hostile environment, i.e. a
user’s smartphone. The framework is theoretically outlined and its inte-
gration into Android is shown. An evaluation shows that the user in the
exemplary use case UBI can be protected by kUBI .

Keywords: Privacy Enhancing Technology · Transparency Enhancing
Technology · Sensor Data · Smartphone · Privacy Framework.

1 Introduction

Ubiquitous computing fundamentally changes our understanding of existing busi-
ness models. Personal-agents such as smartphones are kept close to a user. They
collect sensor data which are of great value for companies because they enable
user-specific products. Benndorf & Normann found that the readiness-to-share
this data is related to monetary aspects [5]. Threats to privacy are knowingly
or unknowingly disregarded [13]. As a result, the majority of users are willing to
disclose comprehensive information about their digital identity [14]. The loose
nature of the data exchange may also be related to the nothing-to-hide mentality
of the users; as long as no negative consequences are feared, the willingness to
share data increases or unjustified data flows are accepted [21]. The consequences
of data protection violations are often unclear from the outside, so that this
danger is sometimes disregarded. This can also be seen in the lack of awareness
when dealing with (sensitive) data. Felt et al. [9] show that the majority of users
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accept Android permissions requested by applications without question. Permis-
sions once granted are generally not revoked [14]. This can lead to a dangerous
spiral, which is exacerbated by observing the results of Weydert et al. [24]: The
willingness to share data continues to grow as users are given the opportunity
to actively participate in and control the data process. Thus, a Transparency
Enhancing Technology (TET) is essential for users to understand which data is
shared with a foreign party and for what reason.

Another serious threat is the lack of awareness of privacy attack vectors in
smartphones. This is serious, since smartphones have broad tracking capabilities
and are part of the private sphere. It is known that sensors such as cameras,
microphones or device memory are sensitive [18]. However, literature shows that
even on the basis of so-called zero-permission sensors like accelerometers or gy-
roscopes, which belong to the Inertial Measurement Unit (IMU) family, attacks
on privacy are possible. A IMU produces Floating Phone Data (FPD) which
are mandatory for sensor-based business models. This motivates the need for a
Privacy Enhancing Technology (PET) which is suitable to protect the data of
the users.

Contribution In this paper, we propose a PET/TET in form of a holistic
framework for balancing privacy and integrity. It takes into account the diverse
and conflicting interests of the stakeholders involved. In fact, we

– present threats related to sensor data in smartphones and place them in the
context of Usage-Based Insurance (UBI),

– present our comprehensive framework kUBI that takes into account the var-
ious demands of the stakeholders,

– show how to embed kUBI into Android to enable privacy-friendly Pay-How-
You-Drive (PHYD), and

– use an existing attack from previous work [20] to show that the proposed
procedure can increase privacy and integrity in PHYD.

Structure The remainder of this paper is organized as follows. In Section 2, we
list related work and present some basics for this work. Afterwards, Section 4
presents the UBI scenario including the stakeholders. A short insight into the
creation of sensor data using Android is given in Section 3. Subsequently, the
framework kUBI is described in detail and integrity and privacy aspects are
considered. An evaluation (c.f. Section 6) shows on the basis of an existing attack
and real data that kUBI can protect privacy. We conclude the paper in Section 7.

2 Related Work

It is obvious that the current permission system in Android is not sufficient in
certain cases [6]. Therefore, there is active research to foster understanding of
sensor data usage (e.g. [4]) or to provide protection mechanisms (e.g. [3,7]). Many
of the approaches either block sensor access altogether or introduce blurring
elements into the collected data to prevent sensor misuse. In the context of
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many sensor-based business models, this is not a practicable way, because the
data lose their meaningfulness. A correct evaluation is no longer possible. Policy-
driven systems must support multiple stakeholders [6] to be applicable in the
given context. However, a policy might contain sensitive information, which has
to be protected. This is a dilemma, since the policy is issued by a business, but
for reasons of privacy, it is to be enforced in the domain of the user, without the
user knowing the contents.

Furthermore, the right conclusions have to be derived from the data for
many business models to be usable. Therefore, Privacy Preserving Data Mining
(PPDM) techniques have to be found. In their survey, Hong et al. [12] analyze
multiple perturbation methods for time series, although not in the context of
UBI. Roth et al. [20] motivated the need for a new privacy-enhanced framework
to enable trust and privacy in sensor-based business models, because it was
shown that existing PPDM techniques such as anatomization, permutation, and
perturbation are insufficient in this area.

When focusing on the context of UBI, there is little work, although these
kind of insurance models are on the rise. Troncoso et al. [22] already proposed
a privacy-enhanced model for Pay-As-You-Drive (PAYD). However, PAYD is
significantly different to PHYD, because here, it is often only the location that
is problematic [10]. Thus, the need for privacy-enabled PHYD models still exists,
since PHYD-enabled rates are common in the UBI business model.

3 Mobile Application Environment

Fig. 1: Layers of the Android
Sensor Stack [2].

This section gives a brief overview of sensor
data processing.

3.1 Android Sensor Stack
Modern smartphones offer a broad range of
sensors. Built-in sensors may measure mo-
tion, orientation, and environmental condi-
tions. They are accompanied by virtual sen-
sors which deliver preprocessed data. In the
context of mobility, data from a smartphone
is often called Floating Phone Data (FPD).

We present the sensor stack at the exam-
ple of Android (Fig. 1; c.f. [2]). Application
developers interact with the Android OS via
the SDK which represents a high level view
of the sensors. The Framework links multiple
applications to the Hardware Abstraction Layer (HAL). It introduces multiplex-
ing, enabling multiple applications to access a sensor at the same time. Virtual
sensors are also created within this layer. The HAL is the link between Android
and a hardware manufacturer’s implementation for a concrete sensor. It follows
a well defined interface (sensors.h). Lower layers are in the sole responsibility of
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hardware manufacturers and may be closed source. Android itself is unable to al-
ter any sensor behavior unless defined in sensors.h. For security reasons, the stack
is organized bottom-up, i.e. higher levels cannot send data to lower instances.
Multiple applications reading data from the same sensor do not interfere. It
is simple to register to sensor readings. First, an Android-wide SensorManager
gives access to the SensorService which in turn can be used to access various
sensors. Then, a SensorEventListener can be used to handle sensor updates. The
following example queries the accelerometer and is updated everytime a new
SensorEvent is acquired.

1 val sensorManager = getSystemService(Context .SENSOR_SERVICE) as SensorManager
2 val accelerometerSensor : Sensor? = ↩

sensorManager . getDefaultSensor (Sensor .TYPE_ACCELEROMETER)
3 val sensorListener = object : SensorEventListener {
4 override fun onAccuracyChanged( sensor : Sensor , accuracy : Int ) { }
5 override fun onSensorChanged(event : SensorEvent) {
6 val dT: Long = event . timestamp
7 val axisX : Float = event . values . get (0)
8 val axisY : Float = event . values . get (1)
9 val axisZ : Float = event . values . get (2)

10 // further process values
11 }
12
13 }
14 sensorManager . registerListener ( sensorListener , accelerometerSensor , ↩

SensorManager .SENSOR_DELAY_FASTEST)

3.2 Attacks on Sensor Data
Both prominent mobile operating systems, Android and iOS, protect specific
sensors using a sophisticated permission system. These permissions control which
app is allowed to use the information by a sensor. However, as of the current
Android 11, some sensors are not protected by the user-controlled permission
system, which indicates a threat for privacy. A corrupt application can read the
sensor data for further processing without the user noticing and never asking
for permission. It may be used to gather the needed sensor data. The privacy
violation facing the user solely using sensor data from an IMU is extensive:

– Identification attacks The first class of attacks wants to identify a driver
from a set of drivers (e.g. [17]). In some cases, a learning phase is neces-
sary so that the attack can name the entity afterwards. Typically, this is a
closed-set problem. Furthermore, the device used can also be the target of
an identification attack in which it is to be uniquely recognized (e.g. [25]).

– Trajectory reconstruction In addition, in some cases it is of interest to
trace the route taken by a user (e.g. [15]). The motivation can be versatile
and ranges from hotspot identification (such as the place of work) to the
derivation of movement patterns, as well as the conclusion of characteristics
of the driver (e.g. hospital visits indicate an illness).

– Reconstruct environment Furthermore, not only can route and driver
be deduced from the sensor data, but also the surroundings and means of
transport such as bus or train (e.g. [11]).

– Spoken word reconstruction Another kind of attack is even more privacy-
invasive since it tries to reconstruct words from the accelerometer and thus
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can gain additional information without the need to ask for microphone
permission. The main motivation for this research is hot-word detection for
personal assistants [26], but can also be used as an invasive technology.
Even though this is only a short list, it motivates the need for privacy-

protection of frameworks. Deactivating a sensor, however, is not a feasible ap-
proach. In our scenario, everyone with access to the raw sensor values can act
as an attacker executing one of the mentioned attacks.

4 Usage-Based Insurance
In the following section we clarify the given scenario of UBI [23]. In addition to
the well-known payment model based on no-claims classes, the models PHYD [8]
and the related but significantly different model PAYD [16] are used in the au-
tomotive insurance industry. Both are innovative pricing models in the category
UBI. In contrast to PAYD, which places value on generally valid characteristics
when calculating the premium, e.g. kilometers driven and the main area cov-
ered [23], PHYD takes into account the individual driving behavior of a driver.
As with existing vehicle insurance policies, a vehicle is priced, and there is no
individual allocation of costs to the respective drivers.

We use UBI as the running example for our framework, although it can be
adapted to other sensor-based business models such as health insurance.

4.1 Stakeholders and Their Respective Interests
The UBI scenario introduces two stakeholders, first the policyholder and then
the insurer. It is obvious that both parties have different priorities regarding the
business model.

The policyholder wants to protect his own privacy. In the PHYD business
model, data such as GPS or sensor data from the accelerometer or gyroscope
are collected while driving to give multiple insights into a user’s driving style.
One can argue that this data are critical in terms of privacy. According to e.g.
Pfitzmann [19], privacy is conveyed among other things by the fact that users
can decide for themselves which data are passed on and to what extent. This is
not the case for most PHYD models, since data are gathered solely as defined
by the insurer. However, a user only receives a discount if he transmits the data.
Thus, he too has an interest in ensuring the integrity of the data.

An insurer on the other side is primarily interested in correct information, i.e,
sensor data with integrity. One can further differentiate between two integrity
aspects. Firstly, an insurer is interested in correct data (data integrity), so he
can derive the correct driver classification for a trip. Secondly, system integrity
is important to guarantee a correct workflow according to the given business
model.

4.2 Workflow
In Roth et al. [20], PHYD and PAYD products from different major insurance
companies in Germany were analyzed. Typically, a vehicle in this context that
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is driven by several people is insured, one of whom is the policy holder. FPD are
recorded using a smartphone or, in rare cases, with a black box. The transmitted
raw sensor values denoted as 𝑆 are usually not analyzed by the insurer itself, but
by an external data processor. Aggregated statements are then made available to
the insurer. Often certain events in the data are analyzed, so-called maneuvers
𝑚, which are patterns in the raw data 𝑆. These include, for example, braking or
acceleration events. The exact process of information extraction is a protected
company secret and is usually not communicated. We assume that the classifi-
cation process uses a blackbox classification function 𝒞 to assign each 𝑚 to one
of 𝜇 classes (e.g. aggressive, neutral, passive). The data processor often works
for several insurance companies. After analysis of the trips of a certain period
of time, a discount is given to the policy holder by the insurance company. The
amount of the discount depends on the type of driving.

Interestingly, data are mostly processed by a third party agency. This is often
motivated as a privacy foundation since the third party processor only receives
the raw sensor data and an identifier independent of customer information. The
insurance companies claim that personal data are thus separated from driving
data. On that basis, privacy shall be provided, although, this seems like a poor
approach to convince a user. Data processing through a third party requires an
additional level of trust from the user, especially since some of the processors
are not even located in Europe. At the moment, illegal use of the data should be
prevented from an organizational and legal point of view by the General Data
Protection Regulation (GDPR) in article 5. However, we motivate the need for
a technological protection mechanism to, along with others, protect one from
privacy attacks. This is underlined by the fact that at this time, there are no
TETs or PETs, which make the evaluation of the driving data comprehensible.

In the interest of data economy and expediency, only data that actively
allow pricing within the framework of a UBI rate should be collected by the in-
surer. If further information can be read out of the data, allowing an increase in
knowledge, this should be viewed critically by the client in the sense of privacy.
Consequently, the question arises whether an insurer will misuse data to derive
further information. A PET should prevent such kinds of attacks.

5 kUBI

There is obvious need for a privacy-enhanced version to process sensor data. Our
proposed pattern named kUBI is device agnostic, hence not bound to a specific
implementation. Furthermore, it is flexible to enable multiple business models
which rely on sensor data.

5.1 Potential Strategies

A holistic pattern for privacy-enhancing existing business models has to take
into account the contradicting requirements of the stakeholders. We now discuss
four different strategies which are possible in the given context.
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1. Processor-based All data are collected by a user using a (blackbox) device
or smartphone application and submitted as raw data to the processor. The
user can neither control nor is there technical evidence that the data is
only used for a specific use case, resulting in a less trustful model. Hence,
this model is a classical example of undercover-agent trust, where an insurer
wants to protect his interests from the legitimate user of the device. This is
the per-se standard model in the context of UBI.

2. User-based Since a user always trusts his local device (called personal agent
trust), it is desirable that a user collects and processes the data in his trusted
domain. To enforce privacy, only results or aggregated partitions of data are
transferred (after approval) to a processor. Integrity is harder to validate on
the processor side.

3. Balanced The processor defines the needed service quality via a policy.
The user anonymizes data w.r.t service policy and only sends aggregated
results. Furthermore, a user can ensure within his anonymization that his
own private goals are reached. Hence, integrity can be controlled by the
process while privacy is solely controlled by a user.

4. Trustee-based Trust is moved from the processor to a trustee, however,
this is a limited enhancement for the user compared to the processor-based
approach since trustworthiness in a model is not increased.

5.2 Privacy Enhanced Model
According to the balanced strategy, we now present our pattern for privacy-
enhanced business models relying on and processing sensor data from users. The
pattern is designed w.r.t Pfitzmann et al. [19] and has two different zones. One
is the local trust zone of a user (User Domain) and the other the domain of the
processor (Business Domain). Nobody trusts the zone of his counterpart with
one exception: the user’s trust zone has an isolated environment called Hostile
Domain (i.e. a Trusted Execution Environment (TEE)) which can execute hostile
but authenticated code in a well defined manner. The user is unable to see or
tamper with functions in this isolated environment. Even though we show our
model’s feasibility at the example of PHYD, it can be ported to other use cases
as well.

kUBI protects users’ privacy by establishing k-anonymity in a data set. Re-
call that in the PHYD model, a vehicle is insured, the rate of which is calculated
by the classification of the trips made with this vehicle. The classification of
a trip is done by the classification of maneuvers. The way the maneuvers are
recognized in the sensor data stream is the same for all drivers, but each driver
shows an individual behavior during a maneuver. This allows an unnecessary
identification of the driver. kUBI first performs Complex Event Processing to
identify these maneuvers in a continuous data stream. It then replaces the de-
tected maneuvers in such a way that although the correct classification of the
maneuvers (by the insurer) is still ensured, the entropy of the maneuvers is re-
duced to such an extent that no conclusions can be drawn about the driver.
This is achieved by using reference maneuvers of the same class as drop-in re-
placements for recognized, driver-derived maneuvers. Performing the whole trip
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Fig. 2: Pattern for privacy enhanced business models relying and processing sen-
sor data from users.

classification in the user domain and only forward that data to an insurer is not
feasible since e.g. additional or historical knowledge is needed and computation
resources are limited.

The proposed framework kUBI is organized in several modules, as illustrated
in Fig. 2, which are either placed in the users domain (i.e. mobile phone) includ-
ing the hostile environment, or the business domain (i.e. insurer). We consider
kUBI being a PET because a user can actively decide what is sent and establish
anonymity himself. We also consider it aTET because the user sees the data
including evaluation, i.e. maneuvers, which are passed on.

Data are generated using a Sensor 𝒮 such as the accelerometer and then
directly forwarded to an EmbeddedSigner unit ℰ which aggregates multiple
sensor values into a data block 𝑑. This unit signs each data block value to prevent
changing sensor values in a block afterwards. The signature and the respective
value is then forwarded to a persistent PrivateStorage 𝒫𝒮 and is forwarded
from here in the form of a trip to two modules. The Anonymizer 𝒜 is re-
sponsible for replacing driven maneuvers with a suitable reference maneuver.
The maneuver identification is performed by a ManeuverExtractor ℳ ,
which is initialized by the insurer and located in the Hostile Domain. A Pol-
icyChecker 𝒫 (also in the hostile domain) checks the correct functioning of
𝒜 . It confirms an integer anonymization by issuing a signature 𝜎 and passes it
to the forwarder in the user’s domain. According to Pfitzmann et al. [19], the
forwarder decides whether the anonymized data blocks ̂̃𝐷 will be forwarded to
the data processor. The data processor checks the signature created by the 𝒫 ,
processes and stores the data and has the possibility to verify the integrity of
the transmitted data with a Verifier 𝒱 .
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5.3 Components
Sensor A PHYD app requests data from specific sensors. For the sake of sim-
plicity we only use the accelerometer. A Sensor 𝒮 continuously generates a data
stream of vectors consisting of several sensor values (say for 3 coordinate axes
𝑥, 𝑦, 𝑧) and a timestamp 𝑡, denoted as ⃗𝑠 = [𝑠𝑥, 𝑠𝑦, 𝑠𝑧, 𝑠𝑡]𝑇 ∈ ℝ4. Outputs are
chronologically organized by the timestamp 𝑠𝑖,𝑡 ( ⃗𝑠𝑖 < ⃗𝑠𝑖+1, i.e. the 𝑖-th vector
was created before the 𝑖 + 1-th)1. As shown in Section 3, a sensor is a virtual
device which can be accessed via the Sensor Event API of Android. It outputs
Sensor Events (i.e. ⃗𝑠𝒮) in the described and defined shape. To enable the inte-
gration of our framework into existing applications, the shape of the data is not
altered.

EmbeddedSigner An application registers at a Signed Sensor Event API to
receive Signed Sensor Events. Signed Sensor Events are extended versions of the
existing Sensor Events with additional information to provide integrity. A Signed
Sensor Event is a concatenation of multiple ⃗𝑠 based on a timestamp 𝛿𝑡𝑆𝑆𝐸 (e.g.
1 second). We call such a Signed Sensor Event data block with 𝑖 elements,

𝑑𝑘 = {[ ⃗𝑠1, … , ⃗𝑠𝑖], 𝜎𝐸𝑆
𝑘 ∣ 𝑠𝑙,𝑡 ∈ (𝑡𝑆𝑡𝑎𝑟𝑡, 𝑡𝑆𝑡𝑎𝑟𝑡 + 𝛿𝑡𝑆𝑆𝐸) for 𝑙 = 1, 2, … , 𝑖}

which starts at 𝑡𝑆𝑡𝑎𝑟𝑡 and includes all ⃗𝑠 generated up to Δ𝑡𝑆𝑆𝐸. Data blocks are
non overlapping, i.e. the 𝑘 + 1-th data block’s first element is ⃗𝑠𝑖+1. Each 𝑑𝑘 also
has, next to its payload, a signature 𝜎ℰ

𝑑𝑘
= (ℋℰ( ⃗𝑠1‖ … ‖ ⃗𝑠𝑖))

𝑑𝐸𝑆 of that payload.
The signature is created by using a secure and publicly known hash function ℋℰ
to hash the concatenation of all Sensor Events in that data block and then signing
the hash value using the EmbeddedSigner’s private key 𝑑ℰ. Furthermore, let
id be a function defined as id(𝑑𝑘) = {0, 1}32 which deterministically creates a
unique ID for a data block (independent of the payload).

The EmbeddedSigner and its Signed Sensor Event API should be used
as a drop-in replacement for the current Sensor Event API and be provided by
Android itself for wide and easy adoption. The Android Sensor Stack architecture
enables the separation of data acquisition by means of the physical sensor and
data processing in the application, hence compatibility of the proposal is ensured.

It is meaningful to place the EmbeddedSigner, which is provided by the OS,
in a secure and tamper-proof enclave. For example, Trusty [1] can be used here.
Trusty is an Android specific implementation of a TEE for various practical
purposes and runs on the same processor of the end device, but according to
the TEE definition independent of userland applications. With the Keystore
API, Android already offers secure key management, used to create and verify
signatures. It is thus suitable for the EmbeddedSigner. kUBI can use digital
certificates whose root CA is Google itself and whose device-specific private key
𝑑ℰ is deposited once by Google in the Keystore API of the respective device.
The device’s public certificate can be freely distributed, e.g. for a data processor
to verify signatures.
1 We use {} to denote such an ordered set and [] to specify an unordered list.
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Fig. 3: Relationship of 𝐷, 𝑆 and 𝑀 . 𝑆 form 𝑀 and are organized in 𝐷.

PrivateStorage The PrivateStorage is a persistent storage which holds all
data blocks 𝐷 of a device, including the set Σ𝐸𝑆 of all signatures 𝜎𝐸𝑆

𝑑1,…,∣𝐷∣
. It also

serves as a buffer, since a trip is only classified by the insurer’s app after it has
been completed. It concatenates multiple data blocks 𝑑𝑖, … , 𝑑𝑗 to a trip �̃� ⊂ 𝐷
which is subject to classification and thus anonymization with the respective
signature set Σ𝐸𝑆

𝐷 = {𝜎𝐸𝑆
𝑑𝑖

‖ … ‖𝜎𝐸𝑆
𝑑𝑗

} for that trip.

ManeuverExtractor According to the setting (c.f. Section 4), maneuvers are
interesting in terms of trip classification. For instance, many hard braking ma-
neuvers occurring in a trip indicate aggressive or inattentive driving. Typically,
all maneuvers 𝑀 are derived by analyzing patterns in the sensor data stream
and e.g. thresholds are not communicated by an insurer. kUBI takes this into
account by placing a customizable ManeuverExtractor into the hostile do-
main of the system. The ManeuverExtractor works as-a-service by sticking
to blackbox principles to protect the insurer’s business case (undercover-agent
trust). This provides secrecy, one important requirement from the stakeholder
analysis. Hence, the ManeuverExtractor extracts maneuvers from the data
block stream using a confidential process. However, the user is able to control
in and output to enhance trust: ℳ ∶ {𝑑1, … , 𝑑𝑖} ⟶ {𝑚𝑑1

, … , 𝑚𝑑𝑖
} = 𝑀 with

∀𝑑 ∈ �̃�. The output is a list of maneuvers crafted by these data blocks including
derivable start and end timestamps.

Figure 3 illustrates the relationship of maneuvers 𝑀 , data blocks 𝐷 and single
sensor values 𝑆. The EmbeddedSigner concatenates multiple sensor values into
data blocks which, in turn, can form maneuvers. However, a sensor value does
not need to form a maneuver, e.g. if the driver is only going straight without
accelerating or braking. 𝑙𝑒𝑛𝑠(𝑚) defines the number of sensor values that form
a maneuver, while 𝑙𝑒𝑛𝑑(𝑚) counts the number of data blocks. It is likely that
∃𝑚𝑎, 𝑚𝑏 ∈ 𝑀 ∶ 𝑙𝑒𝑛𝑠(𝑚𝑎) ≠ 𝑙𝑒𝑛𝑠(𝑚𝑏) holds. Further, we define a transformation
function 𝒯𝑧(𝑥∗) = 𝑦∗ where 𝑥, 𝑦 ∈ [𝑠, 𝑚, 𝑑] and 𝑧 is the destination type. All
elements are time series, but are different subsets. 𝒯 transforms units accordingly
to Fig. 3. For instance, 𝒯𝑠(𝑚) = [𝑠1, 𝑠2, …] transforms a maneuver to a list of
sensor values that form that maneuver.

Anonymizer Since maneuvers are used to categorize a trip, their integrity is
important. However, at the same time, maneuvers help to identify a driver as
shown in [20]. Furthermore, sending raw data to foreign domains is critical, thus
the Anonymizer module is responsible for balancing the mentioned interests.
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Fig. 4: Reference maneuvers �̊�𝑖1 with 𝑖 = 1, … , 𝜇 = 3 are representative for a
category. Shown are maneuvers of type braking for a single 𝑠 (𝜆 is set to 250).

kUBI achieves this by replacing identified 𝑀 in a privacy-friendly, but compre-
hensible way with so-called reference maneuvers using a one-way function with
similar properties like a hash function: 𝒜 ∶ �̃� ⟶ ̂̃𝐷. It is easy to replace a
driven maneuver with a reference maneuver using 𝒜. However, it is very hard
to reconstruct the original maneuver from a reference maneuver.

A reference maneuver is representative for a maneuver type of a class. kUBI
assumes that a reference maneuver is created on the basis of real maneuvers
by overlaying them (which is also common in speech recognition), e.g. using
Soft-DTW barycenter, although it is basically independent of that because ref-
erence maneuvers �̊� are provided by the data processor (i.e. insurer). �̊� is
a 𝜇×𝜈 matrix where 𝜇 is the number of classes an insurer uses to categorize
a trip and 𝜈 is the number of reference maneuvers selectable for replacement
of a maneuver class. We recall that in the given scenario, 𝜇 = 3 classes exist.
Figure 4 illustrates how reference maneuvers can be constructed from previous,
globally recorded maneuvers of a category in the data-processor’s domain using
the weighted average.

The Anonymizer processes any maneuver 𝑀𝑖=1,…,𝜇;𝑗=1,…,𝜈 to select a suit-
able reference maneuver to replace 𝑚. One speaks in the following of the anony-
mous maneuver ̂̃𝑚, once the original maneuver is replaced. In order to per-
form the selection, we use Dynamic Time Warping (DTW). DTW can com-
pare two time series by finding the so-called optimal warping path, denoted as
𝑑𝑡𝑤(𝑚1, 𝑚2). The warping path can be interpreted as a similarity between two
time series, i.e. two maneuvers 𝑚1, 𝑚2, although maneuvers are previously re-
sampled to same length and normalized to enable comparison. Let ℛ ∶ ℝ∗×4 ⟶
ℝ𝜆×4 be a resampling function ℛ to transform any given maneuver 𝑚 ∈ 𝑀 of
arbitrary length so that 𝑙𝑒𝑛𝑠(𝑚) = 𝜆 holds afterwards. The (already normalized)
�̊�𝑖𝑗 with the minimal warping path is selected for replacement, transformed to
a data block and respective sensor values. The result of the Anonymizer is a
set ̂̃𝐷 which contains the trip but all maneuvers have been replaced (and thus
anonymized to provide k-anonymity) with a corresponding reference maneuver.
However, since the maneuver (and its corresponding data blocks resp. sensor
values) has to be adjusted to fit into the data stream, we call it ̂̃𝑑. Note that the
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characteristics of a trip, its maneuver class distribution and order have not been
altered at all, allowing to draw the same conclusions by the data processor.

Forwarder Trust in the system is established, among other things, by the fact
that the data is not sent to the insurer through an app provided by the insurer,
but is under the control of the user (personal-agent trust [19]). If a user decides
to submit data to a data processor, he needs a valid signature 𝜎𝐵(Σ𝐸𝑆

𝐷 , ̂̃𝐷) to
prove an anonymization process as it was agreed on with the data processor.
Therefore, he forwards the anonymized trip ̂̃𝐷 to a PolicyChecker to have its
correctness confirmed.

PolicyChecker By defining a policy Φ, the data processor can determine the
extent to which the sensor values may deviate between the original and the re-
sulting trip. By specifying a policy, the data quality of the trip is guaranteed
despite the anonymization of the sensor data. It is an important building block
to balance privacy and integrity. First, it verifies that the anonymized trip ̂̃𝐷
was created on behalf of the real trip data �̃�. This can be validated by ex-
ecuting a specific Φ. Recall that each ⃗𝒮 ⊂ �̃� has a timestamp which cannot
be altered due to the signature Σ𝐸𝑆

𝐷 . Hence, this combination is used to prove
integrity to a data processor and is transmitted to him via a signature from
its PolicyChecker. Let 𝒫 be a function that creates a valid signature if Φ
holds: 𝒫 ∶ ̂̃𝐷, �̃�, Σℰ

𝐷 → 𝜎𝒫(Σ𝐸𝑆
𝐷 , ℋ𝒫( ̂̃𝐷)) where ℋ𝒫 is a secure hash function.

The signature is essential for further integrity checks within the framework as
seen in Data Processor/Verifier. For reasons of trust, PolicyChecker is
implemented in the hostile domain within the user domain. A user can not alter
or analyze the behavior of that blackbox. However, he controls the input and
output parameters which is an important criterion for user acceptance. The box
is unable to send any information using a side-channel to the data processor.
The output is verifiable by a user and cannot contain any hidden information.
Similar to the ManeuverExtractor, Trusty can be used.

Since the PolicyChecker is flexible in terms of the applied policy, we give
an example of a potential Φ. An anonymization may be correct if 1. The number
of maneuvers in ̂̃𝐷 equals �̃�, 2. Input �̃� from the PrivateStorage can be used to
verify if the distribution of maneuver types in the anonymized trip ̂̃𝐷 equals �̃�,
and 3. Each 𝑑 ∈ �̃� has a valid signature 𝜎𝐸𝑆(𝑑), i.e. no recorded trip is used to
deceive the PHYD system (replay attack); datablocks contain ⃗𝑠 which in turn
have a timestamp 𝑠𝑡 signed into 𝜎𝐸𝑆(𝑑).

For privacy reasons and to clearly separate the domains, the PolicyChecker
does not have access to the Anonymizer, hence is unable to anonymize a given
maneuver in �̃�. Within this framework, the design of the policy is therefore
deliberately limited.
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DataProcessor/Verifier Once the data processor receives data ̂̃𝐷 from a user
along with a corresponding signature 𝜎𝒫 (Σℰ

𝐷, ℋ𝒫 ( ̂̃𝐷)) crafted by the processor-
controlled PolicyChecker, he needs to validate 𝜎𝒫 in the first place. This en-
sures that the data has not been modified and comes from an accepted domain.
Therefore, once he has received the data, he checks that the signed and acknowl-
edged hash ℋ𝒫( ̂̃𝐷) matches the data blocks that were transmitted. Thus, a user
must submit the anonymized data ̂̃𝐷 that was checked by the PolicyChecker,
otherwise the data processor can detect this. The signatures Σℰ

𝐷 as well as the

trip ̂̃𝐷 will be saved and evaluated. To further increase integrity or in case of sus-
picion of fraud by the user, the data processor has another tool at his disposal.
Recall that the Anonymizer performed an anonymization operation �̃� ⟶ ̂̃𝐷,
which is very hard to reverse. The Verifier is used to perform a knowledge
proof, where the user must prove that he is the originator of the transmitted
data, otherwise fraud is assumed. Therefore, the Verifier selects up to 𝜇 per-
cent of random elements from the received trip ̂̃𝐷 (denoted as prove-set 𝑃 ⊂ ̂̃𝐷)
and requests raw data blocks from the prover, i.e. the user. 𝜇 is a security param-
eter to balance integrity and anonymity. Consequently, a trip is only considered
valid if ∀ ̂̃𝑑𝑖 ∈ 𝑃 ∶ ∃𝑑𝑖 [𝒫𝒮 ← 𝑑𝑖 ∧ id (𝑑𝑖) = id ( ̂̃𝑑𝑖)] holds, i.e. a user can submit
the raw data block for a given anonymized data block. Note that the ID of data
block cannot be altered in the process since it is part of the data blocks signature
thus lookup form PersistentStorage is done using id. In addition, the the
Verifier also needs to verify that the given maneuver was not manipulated in
terms of any sensor readings or timestamp since the id is not bound to a data
block’s payload. Σℰ

𝐷 holds all signatures 𝜎ℰ
𝑑1,…,∣�̃�∣

of the data blocks as processed
by the EmbeddedSigner. Hence, he calculates—using ℋℰ—the hash of every
received 𝑑𝑖 and verifies if that signature is part of Σℰ

𝐷. The proof is completed
once the user can submit all needed requested data blocks and if each datablock
is part of the trip which is verifiable thanks to the signatures.

5.4 Basic Design Decisions

kUBI was designed to balance integrity and privacy. These aspects are integrated
at several points in the design.

Integrity The pattern design implements three different proofs which are needed
for a privacy-balanced business model. A user has also an interest in integrity
because he only gets a discount once an insurer accepts the sent and anonymized
data, thus fraudulent behavior is not beneficial.
P1 Data has not been tampered with: A trustworthy EmbeddedSigner unit pro-
cesses each sensor value as soon as it is generated on a lower level of the Android
Software Stack. Each ⃗𝑠 is then hashed and signed by this entity, using its pri-
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vate key 𝑑ℰ. A user altering some values of a ⃗𝑠 cannot create a valid signature,
eventually being detectable by the data processor’s Verifier.
P2 Data has not been modified out of boundaries: A data processor rejects sub-
mitted items from a user unless a valid signature 𝜎𝐵 (Σ𝐸𝑆

𝐷 , ℋ𝒫 (�̃�∗)) is shown.
This in turn is generated by the PolicyChecker according to conditions of the
data processor. This protected control unit allows the data processor to specify
the Quality-of-Service (QoS).
P3 User has produced the data: A user has to prove knowledge of raw data
blocks for any anonymized datablock on request by the Verifier. Although a
user may use data generated by another device, this can easily be handled by
using device-dependent credentials in the PolicyChecker to generate unique
signatures 𝜎𝐵.

Trust Our pattern provides trust at four significant positions.
T1 Box only outputs user verifiable signature: There is no hidden information in
the PolicyChecker’s output since it is easily comprehensible by a user using
𝑑𝒫 to verify the given signature, created using a known hash function ℋ𝒫 and
user controlled input data.
T2 Box is in a secure enclave and cannot be tampered with: Trustee guarantees
that sensitive processes are carried out in the protected environment. A user
cannot create a signature for the PolicyChecker because he does not have
the cryptographic material, i.e. the secret key 𝑑𝒫. Trustee makes sure that it
cannot be read.
T3 User controls which data to forward: The paradigm of user personal-agent
trust was chosen over undercover-agent trust. Each information is processed in
the local domain of the user. Every data transmission is solely controlled by a
user by relying on a forwarding engine.
T4 User can choose freely from policy defined values: A user can select any �̊�𝑖𝑗
to replace a maneuver from a trip �̃�. As long as the PolicyChecker verifies
the integrity, the data processor accepts a value. It is comprehensible for a user
if policy Φ does not hold.

5.5 Modified Android Implementation
Based on the presented model, the following is an exemplary implementation
of the API for working with sensors as shown in Section 3. It is ensured that
due to the interchangeability of the components, a fast adaptation to existing
applications is possible.

1 val signedSensorManager = getSystemService(Context .SIGNED_SENSOR_SERVICE) as ↩
SignedSensorManager

2 val accelerometerSensor : Sensor? = ↩
sensorManager . getDefaultSensor (Sensor .TYPE_ACCELEROMETER)

3 val signedSensorListener = object : SignedSensorEventListener {
4 override fun onAccuracyChanged( sensor : Sensor , accuracy : Int ) {
5 }
6 override fun onSensorChanged(event : SignedSensorEvent) {
7 val dT: Long = event . timestamp
8 val axisX : Float = event . values . get (0)
9 val axisY : Float = event . values . get (1)

10 val axisZ : Float = event . values . get (2)
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11 val datablockId : UUID = event . datablockId
12 // use sensor values
13 }
14 override fun onDatablockComplete( id : UUID, signature : ByteArray) {
15 }
16 }
17 signedSensorManager . registerListener ( signedSensorListener , accelerometerSensor , ↩

SensorManager .SENSOR_DELAY_FASTEST)

One can see that all API calls are the same as in the Android reference
implementation. However, every SignedSensorEvent also holds a data block ID.
Each time a data block is completed, e.g. after 1 second, onDatablockComplete is
called. A developer can then get the data block’s ID to map all sensor values to it.
Furthermore, he gets a signature of that data block (which is the output of ℋℰ).
Applications that do not require the integrity protection features can discard
the optional information accordingly. The separation of onSensorChanged and
onDatablockComplete ensures that real-time processing is still possible when a
new sensor value arrives.

6 Evaluation

Even if the framework is designed generically and the structure is also conceiv-
able for other scenarios, it should nevertheless be shown in the evaluation that
kUBI can increase the anonymity of individual drivers of a vehicle within its sys-
tem boundaries, using the proposed idea of replacing maneuvers with reference
maneuvers and the given PHYD scenario.

6.1 Identification Attack
The identification attack from Roth et al. [20] was used in this work to assess
the quality of the proposed framework. We used the same setting, i.e. same data
set and same parameter settings. In the context of that work it could already be
shown that classical anonymization methods are not sufficient to protect drivers
in the complex context of PHYD. The presented attack is based on supervised
machine learning and assigns with the help of DTW and k-Nearest Neighbor a
maneuver of the types braking, acceleration and cornering to a driver. It is very
robust against noise and other environmental influences.

6.2 Anonymization
An example trip based on real-world data was anonymized using the proposed
approach. A �̊� of shape 3 × 1 served the Anonymizer as a basis to replace
the real maneuvers against reference maneuvers. From Figure 5, one can see all
speed recording of a trip. Maneuvers were extracted using the known approach
and data blocks were recreated using sensor values from the respective reference
maneuvers. We classified the trip before and after anonymization using the same
classification pipeline. The class of each maneuver stayed the same as intended
but the sensor readings are, as shown, much smoother removing any identify-
ing behavior of a user while e.g. accelerating ultimately reducing entropy. At
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Fig. 5: Comparison of a trip from raw data and its anonymized version.

Table 1: Accuracy for prediction using the identification attack and data set
from [20].

(a) Data set without anonymization

Predicted
A B C D E F

A
ct

ua
l

A 0.58 0.06 0.08 0.20 0.05 0.10
B 0.02 0.75 0.03 0.11 0.04 0.05
C 0.02 0.13 0.59 0.10 0.15 0.01
D 0.09 0.04 0.02 0.71 0.05 0.09
E 0.06 0.08 0.03 0.08 0.73 0.03
F 0.05 0.03 0.05 0.10 0.03 0.74

(b) Anonymized data set using kUBI

Predicted
A B C D E F

A
ct

ua
l

A 0.44 0.05 0.05 0.09 0.11 0.26
B 0.17 0.29 0.27 0.10 0.08 0.10
C 0.16 0.13 0.30 0.02 0.11 0.28
D 0.27 0.15 0.09 0.29 0.09 0.10
E 0.13 0.21 0.14 0.14 0.30 0.09
F 0.27 0.06 0.16 0.04 0.07 0.39

the same time, the needed classification can still be drawn from the data. Our
framework will enable data processors to roll their own classification method us-
ing the adaptable ManeuverExtractor and verify correct results using also
a data processor controlled PolicyChecker.

6.3 Privacy
Drivers are considered anonymous if the probability of a true prediction is less
than or equal to the probability of a false prediction of his maneuvers for at
least one other driver (k-anonymity). Section 6.3 illustrates the accuracy for
prediction using the identification attack and data set from [20] a confusion
matrix. Table 1a shows the results for the non-anonymized data set. It clearly
states that the driver is almost in every case identifiable using the illustrated
attack, as the other drives can be excluded with a very high probability. However,
using our proposed PET kUBI , k-anonymity of at least 2 drivers can be ensured
as Table 1b shows. Furthermore, results are very dense, thus the anonymity can
be estimated even higher, since the prediction probability of many drivers is
around 20 %.

7 Conclusion

In this paper, it was first shown using the example of UBI that sensor-based busi-
ness models can benefit from powerful user devices, but that this is accompanied
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by significant risks for privacy. An analysis of the stakeholders shows the dif-
ferent interests. Based on this, a holistic framework called kUBI was presented,
which as PET allows to balance integrity and anonymity as primary protection
goals. The framework was presented in detail and a potential extension in the
Android software stack was described.

We could prove in our evaluation the suitability of the proposed anonymiza-
tion method and the feasibility of the model using real-world data and an ex-
isting identification attack. The results of our privacy-friendly PHYD approach
are promising because kUBI establishes k-anonymity of at least 2 even in this
complex scenario. The risk for side-channel attacks based on raw data, by e.g.
an insurance company, are significantly reduced.

For further work, it is planned to further optimize the framework. Thus,
the integer swapping of data points can possibly compensate for other attacks
described in this work. In addition, various fraud possibilities will not only be
theoretically examined, as is the case here, but will also be implemented in
practice as a distributed system. The generalization of the framework shall be
advanced by means of further use cases.
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